Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596098

RESUMO

Amino acid variants in protein may result in deleterious effects on enzymatic activity. In this study we investigate the DNA variants on activity of CYP2B6 gene in a Chinese Han population for potential use in precision medicine. All exons in CYP2B6 gene from 1483 Chinese Han adults (Zhejiang province) were sequenced using Sanger sequencing. The effects of nonsynonymous variants on recombinant protein catalytic activity were investigated in vitro with Sf12 system. The haplotype of novel nonsynonymous variants with other single nucleotide variants in the same allele was determined using Nanopore sequencing. Of 38 alleles listed on the Pharmacogene Variation Consortium, we detected 7 previously reported alleles and 18 novel variants, of which 11 nonsynonymous variants showed lower catalytic activity (0.00-0.60) on bupropion compared to CYP2B6*1. Further, these 11 novel star-alleles (CYP2B6*39-49) were assigned by the Pharmacogene Variation Consortium, which may be valuable for pharmacogenetic research and personalized medicine.

2.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
3.
PeerJ ; 11: e16051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719112

RESUMO

Since the combination of anticancer drugs and opioids is very common, apatinib and tramadol are likely to be used in combination clinically. This study evaluated the effects of apatinib on the pharmacokinetics of tramadol and its main metabolite O-desmethyltramadol in Sprague-Dawley (SD) rats and the inhibitory effects of apatinib on tramadol in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP2D6.1. The samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The in vivo results showed that compared with the control group, apatinib increased the AUC(0-t), AUC(0-∞) and Cmax values of tramadol and O-desmethyltramadol, and decreased the values of VZ/F and CLz/F. In addition, the MRT(0-t), MRT(0-∞) values of O-desmethyltramadol were increased. In vitro, apatinib inhibited the metabolism of tramadol by a mixed way with IC50 of 1.927 µM in RLMs, 2.039 µM in HLMs and 15.32 µM in CYP2D6.1. In summary, according to our findings, apatinib has a strong in vitro inhibitory effect on tramadol, and apatinib can increase the analgesic effect of tramadol and O-desmethyltramadol in rats.


Assuntos
Tramadol , Humanos , Ratos , Animais , Tramadol/farmacologia , Cromatografia Líquida , Citocromo P-450 CYP2D6 , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Microssomos Hepáticos
4.
Toxicol Appl Pharmacol ; 475: 116653, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574146

RESUMO

AIM: Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS: First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS: Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION: To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.


Assuntos
Citocromo P-450 CYP3A , Ibuprofeno , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C19/genética , Inteligência Artificial , Polimorfismo Genético
5.
Food Chem Toxicol ; 174: 113669, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805545

RESUMO

The objective of this study was to determine the effect of flavonoids on midostaurin disposition considering co-administration and metabolic enzyme gene polymorphism. Enzymatic incubation assays were performed in vitro, while in vivo experiments were conducted in Sprague-Dawley rats. The analytes were determined via UPLC-MS/MS. We found that myricetin was the most potent among the investigated 10 flavonoids in suppressing the metabolism of midostaurin, with an IC50 at a low µM level. After co-administration of midostaurin and myricetin, the plasma concentration of midostaurin's primary metabolite CGP62221 was reduced corresponding to myricetin exposure. Furthermore, CYP3A4 homologous rat protein CYP3A2 was reduced significantly in the co-administration group. Thereafter, the kinetic parameters of 23 recombinant human CYP3A4 variants were determined using midostaurin. The relative intrinsic clearance varied from 269.63% in CYP3A4.29-8.95% in CYP3A4.17. In addition, the inhibitory potency of myricetin was substantially different for CYP3A4.29 and CYP3A4.17 compared with wild type, with IC50 values of 9.85 ± 0.27 µM and 90.99 ± 16.13 µM, respectively. Collectively, our data demonstrated that flavonoids, particularly myricetin, can inhibit the metabolism of midostaurin. Additionally, CYP3A4 genetic polymorphism may contribute to stratification of midostaurin blood exposure.


Assuntos
Citocromo P-450 CYP3A , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Citocromo P-450 CYP3A/metabolismo , Ratos Sprague-Dawley , Cromatografia Líquida , Flavonoides/farmacologia
6.
Acta Pharmacol Sin ; 44(1): 120-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35689091

RESUMO

The innate immune response and inflammation contribute to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Dectin-1 is a pathogen recognition receptor in innate immunity. In this study, we investigated the role of Dectin-1 in the pathogenesis of NAFLD. We first showed that Dectin-1 expression was significantly elevated in liver tissues of patients with NASH. NAFLD was induced in mice by feeding high fat diet (HFD) for 24 weeks. At the end of treatment, mice were sacrificed, and their blood and liver tissues were collected for analyses. We showed HFD feeding also increased liver Dectin-1 levels in mice, associated with macrophage infiltration. Either gene knockout or co-administration of a Dectin-1 antagonist laminarin (150 mg/kg twice a day, ip, from 16th week to 24th week) largely protected the livers from HFD-induced lipid accumulation, fibrosis, and elaboration of inflammatory responses. In primary mouse peritoneal macrophages (MPMs), challenge with palmitate (PA, 200 µM), an abundant saturated fatty acid found in NAFLD, significantly activated Dectin-1 signaling pathway, followed by transcriptionally regulated production of pro-inflammatory cytokines. Dectin-1 was required for hepatic macrophage activation and inflammatory factor induction. Condition media generated from Dectin-1 deficient macrophages failed to cause hepatocyte lipid accumulation and hepatic stellate activation. In conclusion, this study provides the primary evidence supporting a deleterious role for Dectin-1 in NAFLD through enhancing macrophage pro-inflammatory responses and suggests that it can be targeted to prevent inflammatory NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ativação de Macrófagos , Fígado/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL
7.
J Pharm Biomed Anal ; 224: 115191, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36512868

RESUMO

In this study, we investigated the effect of type 1 diabetes mellitus on the modulation of the activities of CYP450s in dynamics by a UHPLC-MS/MS method. The diabetic rat model was constructed by an intraperitoneal single injection of streptozotocin. Fasting blood glucose levels > 16.7 mmol/L were considered as diabetic. The rats were given a cocktail of four probe drugs (10 mg/kg phenacetin, 1 mg/kg tolbutamide, 10 mg/kg metoprolol, and 10 mg/kg midazolam) by oral administration for the pharmacokinetic study. Thereafter, the metabolic ratio (MR) of the metabolites to probe substrates were determined. The results indicated that two weeks after diabetes was induced, diabetes increased the MRs of acetaminophen/phenacetin (CYP1A2) and 4-hydroxyl tolbutamide/tolbutamide (CYP2C9); however, it decreased the MRs of α-hydroxy metoprolol/metoprolol (CYP2D6) and 1-hydroxy midazolam/midazolam (CYP3A4). Two months after diabetes was induced, diabetes increased the MRs of acetaminophen/phenacetin and 4-hydroxyl tolbutamide/tolbutamide. The MR of α-hydroxy metoprolol/metoprolol was decreased and the MR of 1-hydroxy midazolam/midazolam was increased but the difference was not significant. According to the results, CYP1A2 and CYP2C9 activities were enhanced in the diabetic rats. and CYP2D6 activity was inhibited in a short period of diabetes; however, the decrease in CYP2D6 activity was not significant in the long period. CYP3A4 activity was decreased in a short period of diabetes and increased in a long period of diabetes but was not significant in the two periods. This study suggests the activity change rule of the CYP450 enzyme system in diabetes mellitus, which can provide a reference for precise clinical medication.


Assuntos
Citocromo P-450 CYP1A2 , Diabetes Mellitus Experimental , Animais , Ratos , Acetaminofen , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Metoprolol , Midazolam/metabolismo , Fenacetina , Espectrometria de Massas em Tandem/métodos , Tolbutamida
8.
Clin Transl Med ; 12(3): e777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35343085

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS: Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS: Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION: Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/genética
9.
Chem Biol Interact ; 353: 109799, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998819

RESUMO

BACKGROUND AND OBJECTIVE: Valsartan is widely used for the treatment of moderate hypertension. However, previous studies have found that efficacy of the valsartan depends on the dose and intake. Cytochrome P450 (CYP) 2C9 metabolizes ∼15% of the clinical drugs. Genetic polymorphisms of CYP2C9 markedly affect the safety and effectiveness of many drugs, which might lead to adverse reactions and therapeutic failure. Twenty-four novel CYP2C9 variants (*36-*60) had been previously discovered via gene sequencing in the Han population. Our study aims to evaluate the impact of 38 CYP2C9 variants from the Chinese population on valsartan metabolism compared with CYP2C9*1 in vitro. METHODS: Wild-type CYP2C9*1 and other CYP2C9 variants were expressed in Spodoptera frugiperda 21 insect cells. Incubations were performed at 37 °C with 20-2000 µM substrate for 30 min. The metabolite 4-OH valsartan was determined via UPLC-MS/MS. RESULTS: Among the 38 CYP2C9 variants, the enzymatic activities of most variants were significantly altered compared with the wild-type. Three variants (CYP2C9*27, *40 and *49) exhibited increased intrinsic clearance values (134-153% relative clearance). However, 12 variants (CYP *8, *13, *16, *19, *33, *36, *42, *43, *45, *52, *54, *58) caused >90% decreases in the relative clearance of valsartan compared to CYP2C9*1. CONCLUSIONS: Our research provides systematic data for evaluating the effects of CYP2C9 variants on valsartan metabolism in the Chinese population. These results will expand our understanding of the impact of CYP2C9 genetic polymorphisms on valsartan metabolism and will contribute to precision medicine.


Assuntos
Povo Asiático/genética , Citocromo P-450 CYP2C9/metabolismo , Valsartana/metabolismo , China , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2C9/química , Citocromo P-450 CYP2C9/genética , Humanos , Cinética , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Valsartana/análise
10.
Acta Pharmacol Sin ; 43(2): 354-366, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34552217

RESUMO

Emerging evidence shows that chronic inflammation mediated by toll-like receptors (TLRs) contributes to diabetic nephropathy. Myeloid differentiation primary-response protein-88 (MyD88) is an essential adapter protein of all TLRs except TLR3 in innate immunity. It is unclear whether MyD88 could be a therapeutic target for diabetic nephropathy. Here, we used a new small-molecule MyD88 inhibitor, LM8, to examine the pharmacological inhibition of MyD88 in protecting kidneys from inflammatory injury in diabetes. We showed that MyD88 was significantly activated in the kidney of STZ-induced type 1 diabetic mice in tubular epithelial cells as well as in high glucose-treated rat tubular epithelial cells NRK-52E. In cultured tubular epithelial cells, we show that LM8 (2.5-10 µM) or MyD88 siRNA attenuated high-concentration glucose-induced inflammatory and fibrogenic responses through inhibition of MyD88-TLR4 interaction and downstream NF-κB activation. Treatment with LM8 (5, 10 mg/kg, i.g.) significantly reduced renal inflammation and fibrosis and preserved renal function in both type 1 and type 2 diabetic mice. These renoprotective effects were associated with reduced MyD88-TLR4 complex formation, suppressed NF-κB signaling, and prevention of inflammatory factor expression. Collectively, our results show that hyperglycemia activates MyD88 signaling cascade to induce renal inflammation, fibrosis, and dysfunction. Pharmacological inhibition of MyD88 may be a therapeutic approach to mitigate diabetic nephropathy and the inhibitor LM8 could be a potential candidate for such therapy.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/uso terapêutico , Túbulos Renais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Animais , Western Blotting , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/metabolismo , Imunoprecipitação , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície
11.
Expert Opin Drug Metab Toxicol ; 17(6): 707-716, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33910442

RESUMO

Introduction: Cytochrome P450 (CYP) is a monooxygenase superfamily mediating the elimination of anti-hypertensive drugs. Polymorphisms of CYP would lead to differential drug efficacy. Building relationships between genotype and phenotype will benefit individual medical treatment of hypertension.Areas covered: The review systematically summarizes the polymorphisms of four CYPs (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) concentrated distributed in the Han Chinese population. Moreover, the activity of variants on metabolizing anti-hypertensive drugs are reviewed, especially drugs with adrenoceptor blocking properties, as well as their clinical relevancies.Expert opinion: The polymorphisms of CYP can cause stratification in drug exposure of antihypertensive drugs. Although the clinical relevance has been built partially, the translational medicine still lacks reliable data support. Furthermore, the studies have demonstrated that even the same CYP variant will exhibit different catalytic capability for different drugs, which is another obstacle to hinder its application. With the deepening of multiomics research and structural biology, nucleotide polymorphisms can be combined with transcriptome, proteome, metabolome and molecular structure analyses to study the susceptibility to hypertension and drug efficacy. A complete data chain would be further estabolished by combining studies of pharmacokinetics-pharmacodynamics, which can effectively promote the precise application of anti-hypertensive drugs.


Assuntos
Antagonistas Adrenérgicos/farmacocinética , Anti-Hipertensivos/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Antagonistas Adrenérgicos/farmacologia , Anti-Hipertensivos/farmacologia , Povo Asiático/genética , Genótipo , Humanos , Polimorfismo Genético
12.
Drug Des Devel Ther ; 14: 5129-5141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262574

RESUMO

AIM: We aimed to systematically examine the effects of enzymatic activity of 38 human CYP2C9 alleles and 21 human CYP3A4 alleles, including wild-type CYP2C9.1 and CYP3A4.1, which contain the 24 CYP2C9 novel alleles (*36-*60) and 6 CYP3A4 novel alleles (*28-*34) newly found in the Chinese population, on sildenafil metabolism through in vitro experiment. METHODS: The recombinant cytochrome P450 alleles protein of CYP2C9 and CYP3A4 expressed in insect baculovirus expression system were reacted with 10-500 µM sildenafil for 30 minutes at 37°C, and the reaction was terminated by cooling to -80°C immediately. Next, we used ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection system to detect sildenafil and its active metabolite N-desmethyl sildenafil. RESULTS: The intrinsic clearance (Vmax/Km) values of most CYP2C9 variants were significantly altered when compared with the wild-type CYP2C9*1, with most of these variants exhibiting either reduced Vmax and/or increased Km values. Four alleles (CYP2C9*11, *14, *31, *49) exhibited no markedly decreased relative clearance (1-fold). The relative clearance of the remaining thirty-three variants exhibited decrease in different levels, ranging from 1.81% to 88.42%. For the CYP3A4 metabolic pathway, when compared with the wild-type CYP3A4*1, the relative clearance values of four variants (CYP3A4*3, *10, *14 and *I335T) showed significantly higher relative clearance (130.7-134.9%), while five variants (CYP3A4*2, *5, *24, *L22V and *F113I) exhibited sharply reduced relative clearance values (1.80-74.25%), and the remaining nine allelic variants showed no statistical difference. In addition, the kinetic parameters of two CYP3A4 variants (CYP3A4*17 and CYP3A4*30) could not be detected, due to the defect of the CYP3A4 gene. CONCLUSION: These findings were the first evaluation of all these infrequent CYP2C9 and CYP3A4 alleles for sildenafil metabolism; when treating people who carry these CYP2C9 and CYP3A4 variants, there should be more focus on the relation of dose intensity, side effects and therapeutic efficacy when administering sildenafil. The study will provide fundamental data on effect of CYP2C9 and CYP3A4 allelic variation on sildenafil metabolism for further clinical research.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Polimorfismo Genético/genética , Citrato de Sildenafila/metabolismo , Alelos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Pharm Pharmacol ; 72(10): 1405-1411, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32608074

RESUMO

OBJECTIVE: In this study, we aimed to investigate the potential interaction of apatinib and buspirone and underlying mechanism. METHODS: UPLC-MS/MS assay was applied to determine the concentrations of buspirone and its main metabolites (1-PP and 6-OH buspirone) after incubated with liver microsomes. Moreover, the connection of in vitro and in vivo was further determined. Sprague Dawley rats were randomly divided into two groups: group A (20 mg/kg buspirone) and group B (buspirone vs 40 mg/kg apatinib). Tail vein blood was collected and subjected to the UPLC-MS/MS detection. KEY FINDINGS: Apatinib inhibited the generations of 1-PP and 6-OH buspirone dose-dependently with IC50 of 1.76 and 2.23 µm in RLMs, and 1.51 and 1.48 µm in HLMs, respectively. There was a mixed mechanism underlying such an inhibition effect. In rat, AUC(0- t ) , AUC(0-∞) , Tmax and Cmax of buspirone and 6-OH buspirone increased significantly while co-administering with apatinib, but Vz/F and CLz/F decreased obviously while comparing group A with group B . CONCLUSIONS: Apatinib suppresses the CYP450 based metabolism of buspirone in a mixed mechanism and boosted the blood exposure of prototype drug and 6-OH buspirone dramatically. Therefore, extra caution should be taken when combining apatinib with buspirone in clinic.


Assuntos
Buspirona/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/farmacocinética , Animais , Buspirona/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
14.
J Anal Methods Chem ; 2019: 5016757, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886022

RESUMO

Anlotinib is a novel inhibitor of receptor kinase tyrosine with multitargets and has a broad spectrum of inhibitory action on tumor angiogenesis and growth. A simple and rapid UHPLC-MS/MS bioanalytical method was validated for the determination of anlotinib in rat plasma, using imatinib as an internal standard. An Acquity BEH C18 column was used to separate analytes. The eluents consisted of formic acid/water (0.1 : 100, v/v) and acetonitrile with a mobile phase. A triple quadrupole mass spectrometer was operated for the quantification with multiple reaction monitoring (MRM) to determine transitions: 408.2 ⟶ 339.1 for anlotinib, and 494.3 ⟶ 394.1 for imatinib. The validated range was 0.1-50 ng/mL for anlotinib. Mean recovery rate of anlotinib in plasma was ≥99.32% and reproducible. Also, the intra- and interday precisions were both below 15%. This robust method was successfully applied to support the pharmacokinetic study of anlotinib in rats.

15.
Pharmacogenomics ; 14(14): 1731-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24192122

RESUMO

AIM: The purpose of this study was to determine the genetic polymorphisms of the CYP2D6 gene and to elucidate the allele distribution pattern in the Chinese Han population. MATERIALS & METHODS: We used PCR and bidirectional sequencing methods to analyze all nine exons of the CYP2D6 gene in 2129 unrelated, healthy Chinese Han subjects from two geographical locations in China: the northern and southern regions. RESULTS: In total, 165 mutated sites were detected in 2129 participants, of which 67 sites were reported for the first time. Among these novel mutation sites, 22 were nonsynonymous and 12 were named as novel alleles (*87-*93, *94A, *94B and *95-*98) by the Human CYP Allele Nomenclature Committee. In addition, 29 previously reported alleles and 84 genotypes were also detected in 1954 volunteers. Functional prediction of novel variants revealed that eight variants might have a deleterious effect on CYP2D6. Linkage disequilibrium analysis and tagSNP selection were performed separately. By using these methods, distinct differences were found between the two regions. CONCLUSION: This study provides the most comprehensive data concerning CYP2D6 polymorphisms in the Chinese Han population to date and increases the number of known alleles; these findings may greatly contribute to the development of personalized medicine for the Chinese Han population.


Assuntos
Citocromo P-450 CYP2D6/genética , Genética Populacional , Alelos , Sequência de Aminoácidos , China , Citocromo P-450 CYP2D6/química , Frequência do Gene , Estudos de Associação Genética , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Conformação Proteica
16.
Pharmacogenomics ; 13(14): 1571-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23148634

RESUMO

AIM: This study aims to systematically investigate the genetic polymorphisms of the CYP2C19 gene and provide accurate data of the allele distribution pattern in the Chinese Han population. MATERIALS & METHODS: We amplified all nine exons of the CYP2C19 gene in 2127 unrelated healthy Chinese Han subjects from two geographical locations (Zhejiang province, n = 1127; Hebei province, n = 1000), using direct sequencing. RESULTS: In total, six previously reported alleles were found in our study, in which two alleles CYP2C19*6 and CYP2C19*18 were reported for the first time in Chinese Han subjects. In addition, 35 novel variants were detected in the present work, which included 11 new named alleles, 12 nonsynonymous mutations and one insert variant. CONCLUSION: This study provides important data on the pattern of CYP2C19 polymorphisms in Chinese Han subjects, using the largest group of individuals. Furthermore, the study also detects the largest number of novel alleles in one population. These findings are of potential benefit to the development of personalized medicine for the Chinese Han population.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Polimorfismo Genético , Medicina de Precisão , Adulto , Hidrocarboneto de Aril Hidroxilases/sangue , China , Citocromo P-450 CYP2C19 , Éxons , Feminino , Frequência do Gene , Genética Populacional , Humanos , Masculino , Mutação
17.
Oncol Lett ; 4(2): 339-345, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22844381

RESUMO

The aim of this study was to determine the expression of miR-21, miR-31, miR-96 and miR-135b in 52 paired colorectal cancer (CRC) tissues and to analyze the correlation between microRNAs (miRNAs) and clinicopathological features. We developed a quantification method that relies on a standard plot, constructed from known concentrations of standards, in order to measure the number of miRNAs. In addition to this, we analyzed the expression levels of miR-21, miR-31, miR-96 and miR-135b in 52 cases of primary CRC and corresponding normal mucosal tissue using real-time PCR with SYBR-Green I. An independent sample t-test was used to compare the differential expression between tumor tissues and normal mucosal tissues. The Mann-Whitney U and Kruskall-Wallis tests were used to compare the correlation between miRNA expression levels and clinicopathological features. The expression of miR-21, miR-31, miR-96 and miR-135b was upregulated in the CRC tissues compared to normal mucosal tissues (P<0.05). Furthermore, miR-21 and miR-135b were positively correlated with the clinical stage (P=0.048 and P=0.029, respectively), while miR-96 and miR-135b were correlated with liver metastasis (P=0.006 and P=0.013, respectively). Our results suggest that miR-21, miR-31, miR-96 and miR-135b may function in the process of CRC development and progression. miR-135b levels in particular may correlate with the degree of malignancy.

18.
Eur J Clin Invest ; 42(7): 751-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22324744

RESUMO

BACKGROUND: Colorectal cancer is one of the most rapidly increasing cancers in the world, and accumulation of alterations in oncogenes, tumour suppressor genes and mismatch repair (MMR) genes contributes to colorectal tumorigenesis. Thus, we investigated the alterations of 14 microsatellite loci adjacent to MMR genes, p53, adenomatous polyposis coli (APC) and K-ras in 52 Chinese patients with colorectal cancer. MATERIALS AND METHODS: We performed fluorescent polymerase chain reaction and capillary electrophoresis to analyse microsatellite instability (MSI) and loss of heterozygosity (LOH) in microsatellite loci, which included a panel of nine dinucleotide repeats and the Bethesda consensus panel. Additionally, we screened for mutations in exons 4-9 of p53 and the mutation cluster region (MCR) in APC by DHPLC. Codons 12, 13 and 61 in K-ras were analysed using direct sequencing. All variations were confirmed using clone sequencing. RESULTS: The alteration frequency of microsatellite DNA was 55·8% (29/52). Among the microsatellites, five loci exhibited MSI and another nine loci exhibited LOH. The mutation rates of p53, APC and K-ras were 42·3%, 38·5% and 36·5%, respectively. All patients (n = 7) with liver metastasis had a mutation in p53, APC or K-ras. APC mutation was correlated with clinical stage and the presence of lymph node metastasis (P = 0·001 and P = 0·006, respectively). CONCLUSIONS> A total of 80·8% of Chinese patients with colorectal cancer show variations in microsatellite DNA, p53, APC or K-ras. It appears that these microsatellite DNA alterations could be a new biomarker for colorectal cancer.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , DNA de Neoplasias/genética , Repetições de Microssatélites/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Neoplasias Colorretais/patologia , Eletroforese Capilar , Feminino , Fluorescência , Humanos , Perda de Heterozigosidade , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
19.
Free Radic Biol Med ; 52(9): 1700-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22348977

RESUMO

A sensitive and accurate isotope-diluted LC-MS/MS method was developed for determination of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGsn), derived from DNA, and 8-oxo-7,8-dihydroguanosine (8-oxo-Gsn), derived from RNA, in various tissue specimens obtained from normal SAMR1 and senescence-accelerated SAMP8 mice. An age-dependent accumulation of oxidative DNA and RNA damage was observed in all the organs examined, namely, the brain, liver, lungs, heart, kidneys, and testes. Among these, the brain samples exhibited the highest values for DNA damage. These age-related increases in the 8-oxoguanine content in DNA and RNA occurred more rapidly in SAMP8 than in SAMR1 mice. Age-related increases in the contents of 8-oxo-dGsn and 8-oxo-Gsn were also observed in the plasma and urine; however, the ratios of 8-oxo-Gsn to 8-oxo-dGsn in these samples were considerably higher (6 to 13) compared with the values for the samples derived from other tissues (roughly 1), indicating that measurement of 8-oxo-Gsn in urine could be a novel means of evaluating the aging process.


Assuntos
Envelhecimento/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Dano ao DNA , DNA/metabolismo , Guanosina/análogos & derivados , Estresse Oxidativo , RNA/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Encéfalo/metabolismo , DNA/genética , Guanosina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Miocárdio/metabolismo , RNA/genética , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...